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S1. Energy distributions in momentum and real space

Figure S1(A) shows the momentum-space field distribution collected by the CCD with € = 90°. The beam at
the top-right corner marked by M corresponds to the incident signal beam, while the four beams marked by X
represent the pump and control beams. The real-space field distribution is shown in Figure S1(B), where all
beams converge at a common region and undergo interference and superposition. Consequently, all beams are
incident at small angles, defined as the angles between their propagation directions and the z-axis. According to

d=24,,/2sin(p, ) (with d = 200 pm being the spatial period of the stripe fields) and the corresponding

geometric relations, the incident angles of the pump and control beams are ¢, = ¢ = 0.11°, while the signal
beam is incident at g5 = 0.15° in 8 = 90°. Although the incidence angle varies with the twisting angle, taking
into account experimental alignment errors and the fault tolerance associated with the flat-band width, the

signal-beam incidence angle is consistently maintained at approximately 0.15° throughout the experiments.
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Figure S1. The experimentally measured energy distribution in (A) momentum and (B) real space of signal (at

M points in k space), pump and control beams (at X points in & space).

S2. Theoretical model and refractive index calculation in a four-level N-type system
The control and pump fields are written as

|QC - |chxp(ik0l;1 F)+ Q exp(ik,b, ~;7)|2 (SDH

1, ] = |, expikb, - 7) + Q expik,b, - 7)| (S2)
where Qc=unE/h, Qp=wsEp/h, and Q~=113E/h represent the Rabi frequencies of the control, pump and signal
beams, uij is the dipole momentum between levels |z> and |J> » b, =[cos(8),~sin(8)] , b, =[-cos(d),sin(d)]
b, =(1,0) , and b, =(-1,0) , in which 6 is twist angle. The complex refractive index in an atomic EIT
configuration is expressed as n =.f1+ y /2 ~1+ y /2 , where y is the susceptibility for describing the optical

response of the signal field. The susceptibility of four-level N-type atomic systems is proportional to the atomic

density N and the density-matrix element p3; for the transition |1) — |3) . The density-matrix equations for the

four-level N-type atomic system under the rotating-wave approximation are given by [!]
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Here, I, is the decaying rate between |i) and | ), and y, = (', +T';)/2 is the decoherence rate. Among them,
Vor =V =D =A) s 73y =¥y =D, 74y =74 —iA,, Vo =V~ Vi =74 —1(A, +A, —-A),
Vs = Vs — (A, —A)) , As, Ac, and Ay are defined as the frequency detunings of the signal, control and pump

fields, respectively. According to the relation 2Ny, p,, = &, ¥ E, , the corresponding susceptibility can be

obtained by numerically solving p31 in Eq. (S3) under steady-state approximation. Since Qs « Qc, Qp, higher-
order terms of Q¢ are ignored in the calculation. Thus, the susceptibility is not affected by Q but is determined

by the detuning As.
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Figure S2. Gain-loss profile in the non-Hermitian twisted photonic lattice. (A) Dependence of the gain (yg in
red curve) and two types of losses (YLc in blue curve and yi, in black curve) on Ac. (B) Schematic representation
of the gain-loss distribution in the non-Hermitian twisted photonic lattice. Black and blue circles denote regions
of loss, and red circles denote gain. Other parameters are Qs = 21 x 4.8 MHz, Q, = 2n x 2.5 MHz, A = -2m %
15 MHz, A, =21 X 6 MHz.

The imaginary part of the refractive index ( », ), representing the gain and loss, is shaped by active Raman gain

and modified absorption resulting from light amplification and laser-induced atomic coherence 2. Figure S2(A)

plots the calculated #, at three representative positions: an overlapping region of the two stripe fields (red



curve), a region influenced only by the control beam (blue curve), and a region influenced only by the pump

beam (black curve), as a function of A.. Within a specific range of A, n, at the overlapping region becomes

negative, indicating net gain (yg), while the other two regions remain positive, corresponding to absorption
losses (yrp Or yic). As Ac is tuned from -27 x 25 MHz to -2 x 20 MHz, y1, remains nearly constant, whereas
vie gradually decreases, resulting in an increasing imbalance between the two loss channels. Figure S2(B)
provides a schematic representation of the gain-loss distribution in the twisted non-Hermitian lattice Bl. Black

and blue circles denote regions dominated by loss, while red circles mark regions exhibiting gain.

S3. Parameter sensitivity of flat band and localization regime

The flat-band and directional-localization regime demonstrated in main text emerges over a finite and
continuous detuning window, rather than at a single fine-tuned point. Figure S3 presents a finer detuning
interval than that shown in the main text of Figure 2, allowing a more detailed tracking of the flat-band
evolution over A, ranging from -2nx21.5 MHz to -2nx18.3 MHz. As A. increases, the initially overlapping
bands near the M point gradually develop a local flat band accompanied by an enhanced imaginary component,
indicating the strengthening of non-Hermiticity. The flat band becomes most pronounced around A. = -21nx20
MHz, where the gain-loss contrast is maximized. With further increase of A., the non-Hermitian effect weakens
and the flat band progressively disappears. These results demonstrate that flat-band formation occurs within a
finite and continuous detuning window, rather than at a single fine-tuned point.

Moreover, the flat-band-induced directional localization arises from the competition between gain-loss
modulation and inter-channel coupling, rather than requiring an exact gain-loss balance. Despite the inherent
disorder of a warm atomic vapor system, including atomic density inhomogeneity, finite laser linewidths, and
imperfect lattice contrast, the localization is reproducibly observed across different twist angles and control

parameters, demonstrating good tolerance to disorder and experimental nonidealities.
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Figure S3. Band structures along the high symmetry lines. The illustrations are corresponding imaginary part
of band structures around M. Here, Ac = -2nx21.5 MHz in (A), Ac = -2nx21 MHz in (B), Ac = -21%20.5 MHz in
(C), Ac = -2nx20 MHz in (D), Ac = -2ax19 MHz in (E), and A. = -2nx18.3 MHz in (F). The other parameters

are the same as those in Figure 1 of the main text.



S4. Brillouin zone construction and band structure evolution with twist angle
The structure of the twisted photonic lattice at 8 = 90° is shown in Figure S4. The real-space basis vectors are

expressed as ¢, = RX and a, = Rsin(6)x — Rcos(0)y , where 0 is the angle between &, and d,. By the standard

2r .

—— X and
Rsin(6)

orthogonality condition (g, -5, =275,) , the basis vectors of reciprocal lattice are l;1=

- 2z - - . . . . .- - ~
b, = Y cot(0)x — » . For the twisted photonic lattice, the any reciprocal vector is G = mb, + mb, (m, n

Rsin(6)

is positive integers).
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Figure S4. Brillouin zone construction in twisted photonic lattice. (A) The real-space lattice of the twisted

photonic lattice. (B) The first Brillouin zone of twisted photonic lattice.

The Brillouin zone is defined as the region enclosed by the perpendicular bisector planes of all reciprocal-
lattice vectors emanating from the origin and the smallest such region is the first Brillouin zone. When 6 <90°,
the first Brillouin zone is hexagonal, and the reciprocal vectors contributing to it are +b , +b, and +(b, +b,), as
shown in Figure S4(B). The high-symmetry points (e.g., P and R) and the equations of symmetry lines (SQ and
SM) follow directly from the properties of the perpendicular bisectors. Other high-symmetry points are

obtained as intersection points of two perpendicular-bisector lines.

Therefore, the P and R points are located at ( ” ,0) and w,ﬁ , and S, Q and M points are
Rsin(0) Rsin(@) R
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zone is square, and the coordinates high-symmetry points respectively are (0,0), (0,2?”) , (2?”,2?”) . Due to the

rotational symmetry of the lattice, the derivation and simulation for 8 >90° are analogous to the 8 <90° case.
Figure S5 shows the band-structure evolution and directional localization as € increases. In Figure S5(A), the

band structure (real part) is plotted along the high-symmetry path [/'—P(X)—Q(M)—I] for various 6. For



small twist angles (6 < 10°), the lattice sites are densely packed, resulting in strong inter-site coupling that
suppresses directional localization. At 8 = 10°, a point degeneracy appears at the high-symmetry point Q. As
the twist angle increases, the reciprocal lattice rotates, modifying the coupling pathways between sites and
giving rise to local flat-band features in momentum space. The band structure near point Q evolves from a
point degeneracy into a local flat band *l, whose width gradually increases with 6. This trend indicates that
directional localization becomes more pronounced at larger twist angles, with the strongest localization
observed at 6 = 90°, as illustrated in Figs. S5(B) and (C). This geometric control enables dynamic steering of
the localization axis in momentum space without modifying the underlying gain-loss balance. The observed
momentum-space directional localization is directly linked to the reciprocal lattice of the twisted photonic

lattice, whereas non-Hermiticity controls the degree of localization.
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Figure S5. Band structure and directional localization factor evolution with twist angle. (A) The real part of
band structures along the high symmetry lines with different 6. (B) Momentum-space images with different 6.
(C) Measured (purple dots) directional localization factor and theoretical fitting curve as a function of §. Here,
the theoretical parameters are As = -2nx15 MHz, A. = -2nx20 MHz, A, = 2nx6 MHz, Q. = 2nx4.8 MHz, Q, =
2m%x2.5 MHz, respectively.

SS. Momentum-space imaging under different twist angles and power tuning

Figure S6 provides the full set of the momentum-space images as Ac varies for different 8, corresponding to
Figure 5(D) in the main text, and exhibiting evolution trends similar to those observed at 8 = 90° (Figure 4 in
the main text). In each case, the angle between the x-axis and the localization-axis matches the imposed twist

angle 6, confirming that the localization direction follows the lattice rotation. The directional localization factor



(DLF) calculated at 8 = 120° and 135° show trends essentially similar to those at & = 60° and 45°. For clarity,
these two cases are not included in Figure 5(D) of the main text.
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Figure S6. Momentum-space images in different 6 with different Ac. Here, the experiment parameters are As =
-90 MHz, A. =-120 MHz, A, =40 MHz, P. =45 mW, P, =25 mW, and P; = 5 mW, respectively.

Figure S7 provides the full set of the momentum-space images as control-beam power P varies for different 9,
corresponding to Figure 6(B) in the main text. As P. increases, the intensity distribution gradually shifts from
the x-axis toward the localization-axis and ultimately becomes strongly confined along this axis [°l. This
behavior confirms that higher control-beam power enhances non-Hermitian-induced directional localization.
The DLF calculated at = 120°, 135° and 150° show trends essentially similar to those at 8 = 60°, 45°and 30°.

For clarity, these two cases are not included in Figure 6 of the main text.
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Figure S7. Momentum-space images in different € with different control beam powers. The other experimental

parameters are same as Figure S6.



S6. Real-space imaging under different control-beam detuning and twist angles

Momentum-space changes in the signal-beam images inevitably lead to corresponding changes in its real-space
distribution. Figure S8 shows paired momentum- and real-space images for different values of A.. When the
momentum-space pattern does not exhibit directional localization (DLF < 0.5), the corresponding real-space
output remains relatively isotropic, with well-resolved lattice contrast along both transverse directions. In
contrast, when the momentum-space distribution exhibit directional localization (Ac = -120 MHz), the real-
space pattern becomes strongly anisotropic, exhibiting a pronounced stripe-like intensity distribution aligned
with the localization direction, while the lattice contrast along the x direction is significantly reduced—

providing a direct real-space manifestation of channel-selective propagation.

A.=-140 MHz A.=-130 MHz A.=-120 MHz A.=-100 MHz A.=-95 MHz

Figure S8. Momentum-space and real-space images with different Ac. The other experimental parameters are

same as Figure S6.

Furthermore, Figure S9 presents paired momentum- and real-space images for different twist angles 6. As 0 is
varied, the real-space propagation clearly shows that the selected transport channel rotates synchronously with
0, in direct correspondence with the rotation of the localization-axis observed in momentum space. Together,
these observations establish a clear and intuitive correspondence between momentum-space directional

localization and channel-selective transport in real space.
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Figure S9. Momentum-space and real-space images with different 6. Here, the experiment parameters are A. =

-120 MHz. The other experimental parameters are same as Figure S6.



S7. Momentum-space imaging under different pump-beam intensities

In contrast to the control beam, which provides an efficient knob for tuning the DLF, the pump beam plays a
fundamentally different role in our system. Figures S10 (A-B) show the momentum-space images and the
extracted DLF for different twist angles € as a function of the pump-beam power Pp. As Pp increases, the
energy distribution in the momentum space remains localized along the localization-axis, and the DLF shows
only slight variation, consistently approaches 1.
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Figure S10. (A)Momentum-space images recorded at different pump beam powers for 8 = 30°, 45° and 90°,
respectively. (B) Evolution of the directional localization factor as a function of pump beam power for 6 = 30°,
45°, 60° and 90°, respectively. Here, Ac = -120 MHz. The other experimental parameters are same as Figure S6.
(C) Theoretically simulated gain-to-loss ratio (yc/yip) as a function of Qp, where the inset shows the
corresponding variations of the gain (yg, red curve) and loss (yip, black curve) with €. The other theoretical

parameters are same as Figure S5.

To qualitatively analyze this behavior, we theoretically simulate the evolution of the gain-loss ratio (yg/yip) as a
function of the pump Rabi frequency €, as shown in Figure S10(C). When €, increases from 0 to 0.25x2n
MHz, the gain coefficient satisfies yg > 0, indicating that no optical gain is introduced in this regime and the
gain-loss ratio remains zero (yc/yL, = 0), corresponding to P, < 7 mW in the experiment, as shown in Figure
S10(A). In this case, the system is mainly governed by an effective three-level V-type configuration, where the
contribution of the control field is relatively weak, and the momentum-space field distribution appears

localized along the localization axis.



As Q, increases further, the Raman gain rises rapidly within a narrow parameter range, causing yg/yip to
increase sharply and reach values of approximately 1.3. This regime corresponds to pump powers Pp > 7 mW,
where the experimental results still exhibit localization along the same localization axis, as shown in Figure
S10(A). Therefore, although the momentum-space distribution remains localized along the localization axis
with increasing pump power, the underlying physical mechanism of this directional localization is

fundamentally different from the control field.
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