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S1. Energy distributions in momentum and real space
Figure S1(A) shows the momentum-space field distribution collected by the CCD with θ = 90°. The beam at

the top-right corner marked by M corresponds to the incident signal beam, while the four beams marked by X

represent the pump and control beams. The real-space field distribution is shown in Figure S1(B), where all

beams converge at a common region and undergo interference and superposition. Consequently, all beams are

incident at small angles, defined as the angles between their propagation directions and the z-axis. According to

c, p c, p/ 2sin( )d   (with d ≈ 200 μm being the spatial period of the stripe fields) and the corresponding

geometric relations, the incident angles of the pump and control beams are φp ≈ φc ≈ 0.11°, while the signal

beam is incident at φₛ ≈ 0.15° in θ = 90°. Although the incidence angle varies with the twisting angle, taking

into account experimental alignment errors and the fault tolerance associated with the flat-band width, the

signal-beam incidence angle is consistently maintained at approximately 0.15° throughout the experiments.

Figure S1. The experimentally measured energy distribution in (A) momentum and (B) real space of signal (at

M points in k space), pump and control beams (at X points in k space).

S2. Theoretical model and refractive index calculation in a four-level N-type system
The control and pump fields are written as

22

c c 0 0 21 c( ) ( )rexp ik b exp k b ri     
  (S1)
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0p p 3 p 40( ) ( )rexp ik b exp k b ri     
  (S2)

where Ωc=μ23Ec/ћ, Ωp=μ14Ep/ћ, and Ωs=μ13Es/ћ represent the Rabi frequencies of the control, pump and signal

beams, μij is the dipole momentum between levels i and j ,  1 cos( ), sin( )b   
 ,  2 cos( ), sin( )b   

 ,

 3 1, 0b 
 , and  4 1, 0b  

 , in which θ is twist angle. The complex refractive index in an atomic EIT

configuration is expressed as 1 / 2 1 / 2n      , where χ is the susceptibility for describing the optical

response of the signal field. The susceptibility of four-level N-type atomic systems is proportional to the atomic

density N and the density-matrix element ρ31 for the transition 1 3 . The density-matrix equations for the

four-level N-type atomic system under the rotating-wave approximation are given by [1]
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Here, ij is the decaying rate between i and j , and ( ) / 2ij i j     is the decoherence rate. Among them,

21 21 s c( )i      , 31 31 si    , 41 41 pi    , 32 32 ci    , 42 42 c p s( )i        ,

43 43 p s( )i      , Δs, Δc, and Δp are defined as the frequency detunings of the signal, control and pump

fields, respectively. According to the relation 13 31 0 s2N E    , the corresponding susceptibility can be

obtained by numerically solving ρ31 in Eq. (S3) under steady-state approximation. Since Ωs « Ωc, Ωp, higher-

order terms of Ωs2 are ignored in the calculation. Thus, the susceptibility is not affected by Ωs but is determined

by the detuning Δs.

Figure S2. Gain-loss profile in the non-Hermitian twisted photonic lattice. (A) Dependence of the gain (γG in

red curve) and two types of losses (γLc in blue curve and γLp in black curve) on Δc. (B) Schematic representation

of the gain-loss distribution in the non-Hermitian twisted photonic lattice. Black and blue circles denote regions

of loss, and red circles denote gain. Other parameters are Ωs = 2π × 4.8 MHz, Ωp = 2π × 2.5 MHz, Δs = -2π ×

15 MHz, Δp = 2π × 6 MHz.

The imaginary part of the refractive index ( In ), representing the gain and loss, is shaped by active Raman gain

and modified absorption resulting from light amplification and laser-induced atomic coherence [2]. Figure S2(A)

plots the calculated In at three representative positions: an overlapping region of the two stripe fields (red



curve), a region influenced only by the control beam (blue curve), and a region influenced only by the pump

beam (black curve), as a function of Δc. Within a specific range of Δc, In at the overlapping region becomes

negative, indicating net gain (γG), while the other two regions remain positive, corresponding to absorption

losses (γLp or γLc). As Δc is tuned from -2π × 25 MHz to -2π × 20 MHz, γLp remains nearly constant, whereas

γLc gradually decreases, resulting in an increasing imbalance between the two loss channels. Figure S2(B)

provides a schematic representation of the gain-loss distribution in the twisted non-Hermitian lattice [3]. Black

and blue circles denote regions dominated by loss, while red circles mark regions exhibiting gain.

S3. Parameter sensitivity of flat band and localization regime
The flat-band and directional-localization regime demonstrated in main text emerges over a finite and

continuous detuning window, rather than at a single fine-tuned point. Figure S3 presents a finer detuning

interval than that shown in the main text of Figure 2, allowing a more detailed tracking of the flat-band

evolution over Δc ranging from -2π×21.5 MHz to -2π×18.3 MHz. As Δc increases, the initially overlapping

bands near the M point gradually develop a local flat band accompanied by an enhanced imaginary component,

indicating the strengthening of non-Hermiticity. The flat band becomes most pronounced around Δc ≈ -2π×20

MHz, where the gain-loss contrast is maximized. With further increase of Δc, the non-Hermitian effect weakens

and the flat band progressively disappears. These results demonstrate that flat-band formation occurs within a

finite and continuous detuning window, rather than at a single fine-tuned point.

Moreover, the flat-band-induced directional localization arises from the competition between gain-loss

modulation and inter-channel coupling, rather than requiring an exact gain-loss balance. Despite the inherent

disorder of a warm atomic vapor system, including atomic density inhomogeneity, finite laser linewidths, and

imperfect lattice contrast, the localization is reproducibly observed across different twist angles and control

parameters, demonstrating good tolerance to disorder and experimental nonidealities.

Figure S3. Band structures along the high symmetry lines. The illustrations are corresponding imaginary part

of band structures around M. Here, Δc = -2π×21.5 MHz in (A), Δc = -2π×21 MHz in (B), Δc = -2π×20.5 MHz in

(C), Δc = -2π×20 MHz in (D), Δc = -2π×19 MHz in (E), and Δc = -2π×18.3 MHz in (F). The other parameters

are the same as those in Figure 1 of the main text.



S4. Brillouin zone construction and band structure evolution with twist angle

The structure of the twisted photonic lattice at 90   is shown in Figure S4. The real-space basis vectors are

expressed as 1a Rx
  and 2 sin( ) cos( )a R x R y  

   , where θ is the angle between 1a
 and 2a

 . By the standard

orthogonality condition 2i j ija b  


（ ） , the basis vectors of reciprocal lattice are 1
2
sin( )

b x
R





  and

2
2 2cot( )

sin( )
b x y

R R
 


  

   . For the twisted photonic lattice, the any reciprocal vector is 1 2G mb mb 
 

(m, n

is positive integers).

Figure S4. Brillouin zone construction in twisted photonic lattice. (A) The real-space lattice of the twisted

photonic lattice. (B) The first Brillouin zone of twisted photonic lattice.

The Brillouin zone is defined as the region enclosed by the perpendicular bisector planes of all reciprocal-

lattice vectors emanating from the origin and the smallest such region is the first Brillouin zone. When 90   ,

the first Brillouin zone is hexagonal, and the reciprocal vectors contributing to it are 1b


, 2b


and 1 2( )b b 
 

, as

shown in Figure S4(B). The high-symmetry points (e.g., P and R) and the equations of symmetry lines (SQ and

SM) follow directly from the properties of the perpendicular bisectors. Other high-symmetry points are

obtained as intersection points of two perpendicular-bisector lines.

Therefore, the P and R points are located at ( ,0)
sin( )R



and (1 cos( )) ,
sin( )R R

  


 
 
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, and S, Q and M points are
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  
 

 
 
 

, 2

cos( )(1 cos( )),
sin( ) sin ( )R R
   
 

 
 
 

,

2 cos( ) sin( ) 2 cos( ),
1 cos( ) [1 cos( )] cos( ) 1 cos( ) (1 cos( )) sin( ) cos( )R R R

     
      

  
         

. At 90   , the first Brillouin

zone is square, and the coordinates high-symmetry points respectively are (0,0) , 2(0, )
R
 , 2 2( , )

R R
  . Due to the

rotational symmetry of the lattice, the derivation and simulation for 90   are analogous to the 90   case.

Figure S5 shows the band-structure evolution and directional localization as θ increases. In Figure S5(A), the

band structure (real part) is plotted along the high-symmetry path [Γ→P(X)→Q(M)→Γ] for various θ. For



small twist angles (θ < 10°), the lattice sites are densely packed, resulting in strong inter-site coupling that

suppresses directional localization. At θ = 10°, a point degeneracy appears at the high-symmetry point Q. As

the twist angle increases, the reciprocal lattice rotates, modifying the coupling pathways between sites and

giving rise to local flat-band features in momentum space. The band structure near point Q evolves from a

point degeneracy into a local flat band [4], whose width gradually increases with θ. This trend indicates that

directional localization becomes more pronounced at larger twist angles, with the strongest localization

observed at θ = 90°, as illustrated in Figs. S5(B) and (C). This geometric control enables dynamic steering of

the localization axis in momentum space without modifying the underlying gain-loss balance. The observed

momentum-space directional localization is directly linked to the reciprocal lattice of the twisted photonic

lattice, whereas non-Hermiticity controls the degree of localization.

Figure S5. Band structure and directional localization factor evolution with twist angle. (A) The real part of

band structures along the high symmetry lines with different θ. (B) Momentum-space images with different θ.

(C) Measured (purple dots) directional localization factor and theoretical fitting curve as a function of θ. Here,

the theoretical parameters are Δs = -2π×15 MHz, Δc = -2π×20 MHz, Δp = 2π×6 MHz, Ωc = 2π×4.8 MHz, Ωp =

2π×2.5 MHz, respectively.

S5. Momentum-space imaging under different twist angles and power tuning
Figure S6 provides the full set of the momentum-space images as Δc varies for different θ, corresponding to

Figure 5(D) in the main text, and exhibiting evolution trends similar to those observed at θ = 90° (Figure 4 in

the main text). In each case, the angle between the x-axis and the localization-axis matches the imposed twist

angle θ, confirming that the localization direction follows the lattice rotation. The directional localization factor



(DLF) calculated at θ = 120° and 135° show trends essentially similar to those at θ = 60° and 45°. For clarity,

these two cases are not included in Figure 5(D) of the main text.

Figure S6. Momentum-space images in different θ with different Δc. Here, the experiment parameters are Δs =

-90 MHz, Δc = -120 MHz, Δp = 40 MHz, Pc = 45 mW, Pp = 25 mW, and Ps = 5 mW, respectively.

Figure S7 provides the full set of the momentum-space images as control-beam power Pc varies for different θ,

corresponding to Figure 6(B) in the main text. As Pc increases, the intensity distribution gradually shifts from

the x-axis toward the localization-axis and ultimately becomes strongly confined along this axis [5]. This

behavior confirms that higher control-beam power enhances non-Hermitian-induced directional localization.

The DLF calculated at θ = 120°, 135° and 150° show trends essentially similar to those at θ = 60°, 45°and 30°.

For clarity, these two cases are not included in Figure 6 of the main text.

Figure S7. Momentum-space images in different θ with different control beam powers. The other experimental

parameters are same as Figure S6.



S6. Real-space imaging under different control-beam detuning and twist angles
Momentum-space changes in the signal-beam images inevitably lead to corresponding changes in its real-space

distribution. Figure S8 shows paired momentum- and real-space images for different values of Δc. When the

momentum-space pattern does not exhibit directional localization (DLF ≤ 0.5), the corresponding real-space

output remains relatively isotropic, with well-resolved lattice contrast along both transverse directions. In

contrast, when the momentum-space distribution exhibit directional localization (Δc = -120 MHz), the real-

space pattern becomes strongly anisotropic, exhibiting a pronounced stripe-like intensity distribution aligned

with the localization direction, while the lattice contrast along the x direction is significantly reduced—

providing a direct real-space manifestation of channel-selective propagation.

Figure S8. Momentum-space and real-space images with different Δc. The other experimental parameters are

same as Figure S6.

Furthermore, Figure S9 presents paired momentum- and real-space images for different twist angles θ. As θ is

varied, the real-space propagation clearly shows that the selected transport channel rotates synchronously with

θ, in direct correspondence with the rotation of the localization-axis observed in momentum space. Together,

these observations establish a clear and intuitive correspondence between momentum-space directional

localization and channel-selective transport in real space.

Figure S9. Momentum-space and real-space images with different θ. Here, the experiment parameters are Δc =

-120 MHz. The other experimental parameters are same as Figure S6.



S7. Momentum-space imaging under different pump-beam intensities
In contrast to the control beam, which provides an efficient knob for tuning the DLF, the pump beam plays a

fundamentally different role in our system. Figures S10 (A-B) show the momentum-space images and the

extracted DLF for different twist angles θ as a function of the pump-beam power Pp. As Pp increases, the

energy distribution in the momentum space remains localized along the localization-axis, and the DLF shows

only slight variation, consistently approaches 1.

Figure S10. (A)Momentum-space images recorded at different pump beam powers for θ = 30°, 45° and 90°,

respectively. (B) Evolution of the directional localization factor as a function of pump beam power for θ = 30°,

45°, 60° and 90°, respectively. Here, Δc = -120 MHz. The other experimental parameters are same as Figure S6.

(C) Theoretically simulated gain-to-loss ratio (γG/γLp) as a function of Ωp, where the inset shows the

corresponding variations of the gain (γG, red curve) and loss (γLp, black curve) with Ωp. The other theoretical

parameters are same as Figure S5.

To qualitatively analyze this behavior, we theoretically simulate the evolution of the gain-loss ratio (γG/γLp) as a

function of the pump Rabi frequency Ωp, as shown in Figure S10(C). When Ωp increases from 0 to 0.25×2π

MHz, the gain coefficient satisfies γG > 0, indicating that no optical gain is introduced in this regime and the

gain-loss ratio remains zero (γG/γLp = 0), corresponding to Pp < 7 mW in the experiment, as shown in Figure

S10(A). In this case, the system is mainly governed by an effective three-level V-type configuration, where the

contribution of the control field is relatively weak, and the momentum-space field distribution appears

localized along the localization axis.



As Ωp increases further, the Raman gain rises rapidly within a narrow parameter range, causing γG/γLp to

increase sharply and reach values of approximately 1.3. This regime corresponds to pump powers Pp > 7 mW,

where the experimental results still exhibit localization along the same localization axis, as shown in Figure

S10(A). Therefore, although the momentum-space distribution remains localized along the localization axis

with increasing pump power, the underlying physical mechanism of this directional localization is

fundamentally different from the control field.
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