

---

**Supplementary information**

## Vision-based relative positioning in targetless environments via datumconstrained forward intersection

Yushu Yang, Gangyan Xu, Changsheng Qu, Heng Li, Haosen Chen, Lei Hou, Guomin Zhang, Wenkang Guo

**Table S1.** Abbreviations used in this paper.

| Abbreviation | Definition                                    |
|--------------|-----------------------------------------------|
| DFI          | Datum-constrained forward intersection        |
| DFI-MScale   | Minimalist in-situ metric scaling in DFI      |
| BA           | Bundle adjustment                             |
| BBR          | Baseline-to-range ratio ( $B/Z$ )             |
| A95          | 95% confidence ellipse area on the site datum |
| GNSS         | Global Navigation Satellite System            |
| SE(3)        | Special Euclidean group in 3D (rigid pose)    |
| ChArUco      | Checkerboard-ArUco hybrid calibration board   |
| ORB          | Oriented FAST and Rotated BRIEF               |
| LoFTR        | Detector-free local feature matcher           |
| RoMa         | Robust matcher (learning-based)               |
| GT           | Ground truth                                  |
| LSQ          | Least squares                                 |

**Table S2.** Symbols and subscripts used in this paper.

| Symbol              | Definition                                                                     |
|---------------------|--------------------------------------------------------------------------------|
| $A_{95}$            | Area of the 95% confidence ellipse on the site datum                           |
| $B$                 | Stereo baseline length between optical centres                                 |
| $B/Z$               | Baseline-to-range ratio                                                        |
| $\mathbf{C}_i$      | Optical centre of camera $i$ ( $\mathbf{C}_i = -\mathbf{R}_i^T \mathbf{t}_i$ ) |
| $d$                 | Signed offset of the datum plane $\Pi$ : $\mathbf{n}^T = \mathbf{x} + d = 0$   |
| $f$                 | Focal length in pixels                                                         |
| $h_{\text{meas},i}$ | Tape-measured optical-centre height of camera $i$ above $\Pi$                  |
| $N$                 | Number of observations or pairs (context-specific)                             |
| $\mathbf{P}_{bj}$   | ChArUco point $j$ on board $b$ (board local frame)                             |
| $\mathbf{P}_\Pi$    | Orthogonal projector onto $\Pi$ ( $\mathbf{I}_3 - \mathbf{n}\mathbf{n}^T$ )    |
| $\mathbf{R}_i$      | Rotation of camera $i$ (world $\leftarrow$ camera)                             |
| $r_{\text{base}}$   | Baseline prior residual $\ \mathbf{C}_1 - \mathbf{C}_2\  - B_{\text{meas}}$    |
| $r_{h,i}$           | Height prior residual $\mathbf{n}^T \mathbf{C}_i + d - h_{\text{meas},i}$      |

|                                 |                                                                                                   |
|---------------------------------|---------------------------------------------------------------------------------------------------|
| $\mathbf{r}_{i,j}^{reproj}$     | Reprojection residual of point $j$ in camera $i$                                                  |
| $\mathbf{s}, \widehat{S}_{lsq}$ | Metric scale correction (median or least-squares)                                                 |
| $\mathbf{t}_i$                  | Translation of camera $i$ (world frame)                                                           |
| $\mathbf{T}_i^W$                | Extrinsic of camera $i$ (camera→world), $[\mathbf{R}_i \mid \mathbf{t}_i] \in \text{SE}(3)$       |
| $\mathbf{T}_b^W$                | Pose of ChArUco board $b$ in world frame                                                          |
| $\mathbf{u}_{ij}$               | Undistorted pixel of point $j$ in camera $i$                                                      |
| $\tilde{\mathbf{u}}_i$          | Homogeneous pixel direction $[u_i, v_i, 1]^T$ (undistorted)                                       |
| $\mathbf{v}_i$                  | Unit bearing (ray) of camera $i$ in world frame                                                   |
| $w_i$                           | Incidence weight $\alpha  \mathbf{n}^T \mathbf{v}_i $                                             |
| $\mathbf{X}_i$                  | Ray-plane landing from camera $i$ on $\Pi$                                                        |
| $\bar{\mathbf{X}}$              | Incidence-weighted mean of landings                                                               |
| $\mathbf{X}_\Pi$                | Orthogonal projection of $\mathbf{X}$ onto $\Pi$                                                  |
| $\mathbf{x}$                    | 3D point in world frame                                                                           |
| $\mathbf{x}_0$                  | Site mark (origin) on the datum plane                                                             |
| $Z$                             | Range (standoff) along the ray from camera to target                                              |
| $\alpha$                        | Inter-ray intersection angle at the landing point                                                 |
| $\chi^2_{2,0.95}$               | 2D chi-square quantile for 95% confidence                                                         |
| $\xi(\mathbf{x})$               | On-datum 2D map coordinates of $\mathbf{x}$                                                       |
| $\lambda_i$                     | Ray parameter for camera $i$ : $-\frac{\mathbf{n}^T \mathbf{C}_i + d}{\mathbf{n}^T \mathbf{v}_i}$ |
| $\mathbf{n}$                    | Unit normal of the datum plane $\Pi$                                                              |
| $\pi(\cdot)$                    | Pinhole projection operator                                                                       |
| $\rho_{px}, \rho_B, \rho_h$     | Robust losses for pixels, baseline and height priors                                              |
| $\Sigma_\theta$                 | Covariance of retained state blocks (poses, plane)                                                |
| $\Sigma_{X,i}$                  | Landing covariance from camera $i$                                                                |
| $\Sigma_{X\Pi}$                 | Planar covariance of fused landing on $\Pi$                                                       |
| $\Sigma_\xi$                    | 2D covariance in $(\mathbf{u}_\Pi, \mathbf{v}_\Pi)$ basis                                         |
| $\sigma_{px}$                   | Per-axis pixel noise after undistortion                                                           |
| $\theta$                        | Parameter/state vector used in propagation                                                        |
| $\tau$                          | Incidence gate threshold for $ \mathbf{n}^T \mathbf{v}_i $                                        |

|                                      |                                                                                          |
|--------------------------------------|------------------------------------------------------------------------------------------|
| $\mathbf{u}_\Pi, \mathbf{v}_\Pi$     | Orthonormal basis spanning the datum plane $\Pi$                                         |
| $i, b, j$                            | Indices: camera $i$ , board $b$ , corner $j$ ; $A, B$ camera labels; $(a, b)$ pair index |
| $\Pi, \text{GT, est, lsq}$           | Projected on $\Pi$ ; ground truth; estimate; least squares                               |
| $(\cdot)^w$                          | Quantity in world frame                                                                  |
| $(\cdot)^T, (\cdot)^{-1}, (\cdot)^t$ | Transpose; inverse; after scale correction                                               |
| $(\cdot)$                            | Estimate                                                                                 |