Category	Paramet	Valu	Definition	Justification	Source
	er	e			Source
Government	H	50	Penalty for non- compliance by construction enterprise	Set higher than the net compliance cost (F - $f = 15$) to ensure deterrence, abstracting the median from actual fine ranges (e.g., 30,000 - 100,000 RMB in Shenzhen and Suzhou).	
	E1	50	Subsidy for proactive construction enterprise	Set to exceed the primary cost barrier ($E_1 > F = 45$), reflecting pilot programs designed to fully cover initial sorting costs and incentivize participation.	[1,2]
	E ₂	48	Subsidy for proactive recycling enterprise	Set close to high-quality recycling cost ($K_1 = 50$), reflecting policies that support technology investment and market entry.	
Construction enterprise	F	45	Cost of proactive sorting and waste separation	Higher than passive disposal cost $(f = 30)$, based on industry data on increased labor, time, and equipment expenses for on-site sorting.	
	f	30	Cost of passive mixed disposal	Baseline cost for standard landfilling or low-cost disposal methods.	[2, 4]
	Ι	50	Revenue from selling sorted materials	Higher than revenue from mixed waste ($R = 40$), reflecting the premium price recyclers pay for less contaminated, pre-sorted materials.	[3,4]
	R	40	Revenue from selling mixed materials	Baseline revenue for low-value, mixed C&D waste.	
Recycling enterprise	Κ1	50	Cost of high- quality recycling	Represents substantial capital for advanced technologies (e.g., purification). Set significantly higher than low-quality methods ($o = 25$).	
	0	25	Cost of low- quality recycling	Baseline cost of basic recycling processes with minimal technology.	[5,6]
	V	70	Revenue from high-quality recycled products	Reflects market premium for certified recycled aggregates. Set to ensure high-quality recycling is more profitable (V - $K_1 > i - o$) than low-quality.	
	i	40	Revenue from low-quality	Baseline market price for low- grade recycled materials.	

 Table S1. Justification of Key Parameter Settings.

		20	recycled products		
	W	30	substandard recycling	becomes unprofitable (i - o - w < 0), discouraging non-compliance.	
Cross-cutting	р	48	Subsidy reduction coefficient	Controls decay rate of subsidies; calibrated so $E_1, E_2 \rightarrow 0$ when $q = 1$.	
	q	0.5	Resource utilization rate (market maturity index)	Reflects current national average (approx. 40 - 50%) for C&D material reuse in China, as reported in official statistics.	
	n	10	Coordination cost / efficiency loss between enterprise	Represents inefficiencies from poor collaboration or information asymmetry.	[7,8]
	u	20	Environmental remediation cost for government	Fiscal burden of pollution clean- up from improper waste handling.	
	с	3	Auxiliary fine component	Represents marginal penalties used in secondary enforcement.	

References

1.Chen J, Hua C, Liu C. Considerations for better construction and demolition waste management: Identifying the decision behaviors of contractors and government departments through a game theory decision-making model. J Clean Prod. 2019;212:190-199. [DOI:10.1016/j.jclepro.2018.11.262]

2.Hua C, Chen L, Liu C, Yang C. The effect of incentive policies on the diffusion of construction and demolition waste recycling: A government perspective. Waste Manag Res. 2025;43:50-61. [DOI:10.1177/0734242X241231400]

3.Yuan H, He L, Wu H, Zuo J. Differentiated subsidy mechanism for promoting construction and demolition waste recycling. J Clean Prod. 2023;405:137051. [DOI:10.1016/j.jclepro.2023.137051]

4.Lu W, Du L, Feng Y. Decision making behaviours and management mechanisms for construction and demolition waste recycling based on public–private partnership. Environ Sci Pollut Res. 2022;29:82078-82097. [DOI:10.1007/s11356-022-21221-x]

5.Wang Y, Qi L, Cui W. Evolutionary game analysis on behavioral strategies of multistakeholder in construction and demolition waste (C & DW) recycling product industry. Research Square [Preprint]. 2023. Available from: https://doi.org/10.21203/rs.3.rs-3630255/v1.

6.Su Y, Xu Y, Bao Z, Ng ST, Gao Q. Stakeholder interactions of government intervention in construction and demolition waste recycling market: A game theory approach. Dev Built Environ. 2024;18:100391. [DOI:10.1016/j.dibe.2024.100391]

7.Zheng J, Tan R, Yu M, Tang Z, Zhang J. Optimal decisions of construction and demolition waste recycling based on reference green effect under different subsidy models. Comput Ind Eng. 2024;196:110479. [DOI:10.1016/j.cie.2024.110479]

8.He W, Yang Y, Wang W, Liu Y, Khan W. Empirical study on long-term dynamic coordination of green building supply chain decision-making under different subsidies. Build Environ. 2022;208:108630. [DOI:10.1016/j.buildenv.2021.108630]